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SUMMARY 
A semi-implicit Lagrangian finite difference scheme for 3D shallow water flow has been developed to  
include an eddy viscosity model for turbulent mixing in the vertical direction. The a-co-ordinate system 
for the vertical direction has been introduced to  give accurate definition of bed and surface boundary 
conditions. The simple two-layer mixing length model for rough surfaces is used with the standard 
assumption that the shear stress across the wall region at  a given horizontal location is constant. The bed 
condition is thus defined only by its roughness height (avoiding the need for a friction formula relating to 
depth-averaged flow, e.g. Chezy, used previously). The method is shown to be efficient and stable with an 
explicit Lagrangian formulation for convective terms and terms for surface elevation and vertical mixing 
handled implicitly. The method is applied to current flow around a circular island with gently sloping sides 
which produce periodic recirculation zones (vortex shedding). Comparisons are made with experimental 
measurements of velocity using laser Doppler anemometry (time histories a t  specific points) and surface 
particle-tracking velocimetry. 
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INTRODUCTION 

Computational schemes for the simulation of the shallow water equations in depth-averaged 
form have become widely used following the pioneering work of Leendertse.' He used an 
alternating direction implicit (ADI) time-stepping scheme for the equations in non-conservation 
form with finite difference spatial discretization. Explicit schemes have since been used for the 
equations in conservation form with finite difference2 and finite element3 discretization. Rect- 
angular' and b~undary - f i t t ed~ .~  meshes have been used. The latter ideally requires remeshing 
at each time step if the wet/dry boundaries are moving, although to date this has not been 
attempted to our knowledge. The methods above are Eulerian, i.e. the equations are solved in 
partial differential form (with flow properties only required at  fixed positions). In many cases 
numerical instability from the convective terms is suppressed by upwind differencing (for implicit 
as well as explicit schemes). This inevitably introduces numerical diffusion and loss of accuracy, 
although the technique has become more sophisticated over the  year^.^.^ (The references given 
above are a selection familiar to the authors and many more are given in the wide-ranging 
review of the ASCE.7) 

Recently a Lagrangian scheme for convective terms has been introduced.* Here (to first order 
in time) a fluid particle is assumed to arrive at  a mesh point at the end of a time step and its 
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known velocity at the beginning of the time step is assumed constant over the time step and 
equal to that at the mesh point. The position of the particle at the beginning of the time step 
may thus be obtained and its velocity obtained through interpolation from the values at the 
surrounding mesh points. The total derivative for velocity may thus be introduced into the 
numerical scheme. The method is explicit but does not have the time step limitation of Eulerian 
schemes (the Courant condition). The experience of Casulli' and the present authors is that the 
technique is stable and accurate. Upwind differencing is avoided. The method may readily be 
made higher-order in time. (There is corresponding experience for vortex methods which are 
Lagrangian.') The water surface elevation gradient and a linearized form of the bed shear stress 
terms are treated implicitly for stability and the horizontal diffusion terms explicitly. The 
numerical scheme fully coupled in two orthogonal directions gives a five-diagonal equation set. 
With modern numerical algorithms based on the preconditioned conjugate gradient method 
such equation sets may be solved very efficiently particularly on a vector processor. The 
Lagrangian part of the code also vectorized readily and overall such an approach is well suited 
to modern computing. (Some results from such a code will be presented in this paper.) 

Computations based on the three-dimensional form of the shallow water equations are a more 
recent development. Pressure is still assumed to be hydrostatic. This implies that the horizontal 
pressure gradients are independent of vertical position, which is a similar assumption to that 
inherent in the parabolic form of equations used in certain bounded viscous flow problems." 
The physical implication is that weak or secondary effects driven by attached boundary layers 
in the vertical direction are reproduced while gross effects such as flow separation or steep wave 
evolution are not. The Eulerian AD1 system for depth-averaged flows has been extended to 
three dimensions.' '," The horizontal momentum equations are now required for a specified 
number of vertical levels and substituted into the continuity equation integrated over water 
depth to give a simultaneous equation set with water surface elevations as unknowns. In 
Reference 12 the so-called o-co-ordinate system13 is used in the vertical direction so that the 
depth at any horizontal position is divided into the same number of segments (this will be fully 
described later). The vertical diffusion terms are handled implicitly for stability and the convective 
terms by a mixture of an implicit scheme with upwind differencing, an explicit scheme with 
central differencing and some high-order dissipation. The horizontal diffusion terms including 
only second derivatives of velocity are also handled implicitly. Simple turbulence models have 
been incorporated with various formulae for bed shear stress. 

The semi-implicit Lagrangian scheme has also been extended to three  dimension^.'^ The 
vertical diffusion term is again treated implicitly for stability while the horizontal diffusion terms 
are treated explicitly. The explicit Lagrangian form for the convective terms is a straightforward 
development from the depth-averaged case. A constant vertical diffusion coefficient was em- 
ployed (which may be chosen from empirical considerations) and a simple bed boundary 
condition was used based on the Chezy formula. A uniform vertical mesh was set up (in real 
space). A n  advantage of the uniform vertical mesh suggested by the authors is that for very 
shallow water (which is often a large part of a computational domain) the equations revert to 
the depth-averaged equations and the numerical solution is quite efficient. A disadvantage is 
clearly that the vertical velocity gradients are only roughly approximated at the bed and at the 
water surface. 

In this paper we develop the formulation of Casulli and ChengI4 because the Lagrangian 
scheme for the convective terms has desirable characteristics as described above. In order to 
resolve accurately the vertical velocity gradients, we use the o-co-ordinate system. We in- 
corporate the well-established two-layer eddy viscosity model for the vertical direction.' s We 
use the rough turbulent boundary layer approximation with the result that only the bed 
roughness height is required to specify bed conditions (thereby avoiding the need for a formula 
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such as Chezy's). The bed boundary condition is based on the well-established criterion that 
the shear stress is constant across the law-of-the-wall region. A rectangular horizontal mesh is 
used. This means that the wet/dry boundary generally crosses the mesh cells obliquely, but since 
this boundary is moving in time, a boundary-fitted mesh would require generation at each time 
step. Ideally an adaptive mesh system with new boundaries would be generated at each time 
step, but this is not attempted here. 

Prediction of unsteady recirculating flows is a challenging problem in fluid mechanics16 and 
particularly challenging for shallow water flows with many practical implications. In this paper 
we present results for flow around a circular island with gently sloping sides where vigorous 
vortex shedding occurs (perhaps surprisingly). Computational results are compared with experi- 
mental measurements of velocity variation with time at  specific points obtained by laser Doppler 
anemometry. A surface velocity vector plot is also compared with one obtained by particle- 
tracking velocimetry (PTV).I7 

MATHEMATICAL FORMULATION 

Definitions of water surface elevation q, water depth h and bed elevation z ,  are shown in Figure 1. 
Starting from the Navier-Stokes equations and taking mean quantities in an averaging time 

At which is small in relation to the time scales of the large-scale, slowly varying structures in a 
flow, we obtain the Reynolds equation system. We then accept the Boussinesq assumption 
relating the turbulent stresses introduced by the averaging process to the mean velocity gradients. 
Furthermore, in shallow water flows we assume the pressure p to be hydrostatic so that 

P = P d r l  - 4, (1) 
giving 

where p is the fluid density, g is the gravitational acceleration and (x, y, z )  is the orthogonal 
co-ordinate system. 

The equation system with the continuity equation thus becomes (ignoring Coriolis forces) 

a v  + u  av + v  av + w  av = - g  dV + P !  (a? +;;)+a (" ">. (4) 
at ax ay aZ ay p a x 2  az aZ 

au av aw 
- + - + - = 0, 
ax ay aZ 

Figure 1 .  Definition sketch 
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where u, u and w are the velocities in directions x ,  y and z respectively, pH is the horizontal 
diffusion coefficient and pv is the vertical diffusion coefficient. The continuity equation may be 
integrated over depth to give 

a 2 + ax u dz + ,”, Jz: v dz = 0. 

There are boundary conditions for shear stress at the bed, 

b pv - = ‘ s y ,  
b pv - = Tx, aZ aZ 

and at the water surface (due to wind), 

aU 
aZ llv = T;, - w  

au 
llv aZ - T X ,  

Hereafter we ignore any influence of wind, i.e. r: = T; = 0. 
We now translate to the a-co-ordinate system where 

z -Y I  
h ’  

a=- 

giving a = 0 when z = r]  and CJ = - 1 when z = z,. Since u = u(x, y, a, t), 

du au au au do au 
dt at ax ay dt ao’ 

+ u - +  u - +-.- _ - _  - 

with a corresponding expression for dvldt, and we define o = h daldt. Also 

with a corresponding expression for 

a (” . ”. 
az aZ 

Since 

the shallow water equations become 

(7) 

(9) 

iiv dV au av aYI + P H  ( a 2 u  + + ( P V  (13) 
ay a.x2 h aa ph ao ’ + u  + u  + = -.4 

at zX ay h a. 
The depth-integrated continuity equation is unchanged. 
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To obtain the vertical velocity w, we have 

0 = w - g + $) - (c7 ; + $) - (* $ + 2). 
N o t e t h a t w = O w h e n o = O o r  -1. 

The shallow water equations are thus defined in the a-co-ordinate system. 

TURBULENCE MODEL 

We incorporate the standard two-layer mixing length model for eddy viscosity’ describing 
vertical mixing, 

where urn = J(u2 + u2),  p is the molecular viscosity and 1 is the mixing length. The two-layer 
model for I is defined as I = k(z  - zo) for (z - zo) < Ah/k and 1 = Ah for Ah/k < ( z  - z,,) < h, where 
A and k are turbulent boundary layer constants usually specified as 0.09 and 0.43 respectively. 
Note here that the local depth h is also the boundary layer thickness. For ‘rough’ surfaces 
within the inner or ‘wall’ region the velocity profile is logarithmic, 

where u* = J(zb//p) (friction velocity), k,  is the roughness height and B is set conventionally 
to 33. It is generally accepted that the shear stress within the wall region is constant (for a given 
horizontal location). For a given vertical position z1 we thus have 

To give the shear stress components in directions x and y, this expression is conventionally 
resolved as 

Equations (7), (19) and (20) together provide the bed boundary condition, i.e. the boundary 
condition for the cell adjacent to the bed, which should of course lie well within the wall region. 
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The horizontal diffusion term is of less significance and the empirical expression pH = p ~ ,  u,h 
is used with cH = 0.1. A range of values for cH has been and 0.1 is chosen as a 
representative value. p,, is thus not constant as in Reference 14 and the inclusion of only 
second-order derivatives in the momentum equations is consistent with Reference 12. 

FINITE DIFFERENCE FORMULATION 

We use the conventional staggered mesh system with cells numbered i, j, k for directions x, y, 
z, where i = 1 , .  . . , 1 , j  = 1 , .  . . , J and k = 1 , .  . . , K, with k = 1 for the bed cell and k = K for 
the surface cell. The horizontal cell sizes are Ax and Ay. The momentum equations (12) and (13) 
take the form 

un + 1 At n + 1  
1 + 1 / 2 . ~ . k  = F u : + 1 / 2 , ~ , k  - 9  - ( q I + l , J  - q:,;') Ax 

d+ 1 /2 . , .k  + 1 1 2  u:+':/2. ~ . k +  1 - 

+ At --( P ~ -~~ ~~ . -~~ ~ ~ 

h:+ 1 / 2 .  J 

(21) 

+ At P hl, j+ 1 / 2  do P 
Kj+ 1 / 2  do 

(22) 

where n denotes the time level, At is the time step and do is the vertical mesh spacing, a 
constant equal to 1/K in this case. Note that here the subscript 'V' has been omitted from 
pv to avoid confusion. In more convenient matrix-vector form 

(23) 

(24) 

A l + 1 / 2 . j U l : : / 2 . j =  G Y t 1 / 2 , j - g  - ( V i + ~ . j - V i . j  At n + 1  n +  1 )hY+1/2,jACTT Ax 

A y . j + 1 / 2 V y , ; i 1 / 2  = G l , j + 1 / 2  - g  - ( q i , j + l  At n + l  - V y , ; ' ) h Y , j t 1 / 2  

AY 

where 

ACT = [ l /K , .  . . , 1/KIT, 

Here F is the explicit Lagrangian operator described in full below. The tridiagonal matrix 
A has different forms for directions x and y, though omitting the subscripts 'i + i, j' and 
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' i ,  j + i', it takes the common form 

A =  

where ak-  1 ,  ak and ak + are the elements of the kth row for k = 2,. . . , K - 1 given by 

Substituting into the depth-integrated continuity equation gives in matrix notation 

Substituting for U and I/ gives 

where AaTA-' ACT is a positive number. For each point i, j we thus have an equation for qi,j, 
qi+ 1 ,  j ,  qi, j +  qi- j ,  yli, j -  There are thus I x J equations which may be solved very efficiently 
as before using a preconditioned conjugate gradient solver. 

Having solved for qi , j ,  the vectors U and V may be obtained by solving the tridiagonal 
equations (23) and (24). 

It now remains to solve for q j , k +  k = 1,. . . , K. From continuity we simply have at new 
time level n + 1 
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The corresponding values of q j . k +  

form as 
are obtained from equation (15) in central difference 

h i + 1 * j - h i - 1 . j  V i + i , j - V i - I , j  + 
2Ax 2Ax O i . j . k + l / Z  = W i . j . k + l / Z  - U i . j , k + l / 2  

Note that fsk+ 1 1 2  = - 1 + k do and all values are for time level n + 1 except in the last two 
terms as indicated. 

The method is thus complete apart from the specification of the finite difference operator F .  
A particle which ends up at a mesh point i + $, j ,  k at the end of a time step has a position 
at the beginning of the time step which is obtained by assuming that the velocity is constant 
over the time step. Thus 

_ -  Du u l z : / 2 , j , k  - ul+ l / Z - a , j - b , k - c  - 
Dt At 3 

where 

1 i 2 , j . k  At 
9 c =  

ul+ 112. j ,  k At a = ______ vl+ 1 i 2 . j . k  At b =  
Ax AY h i + l / Z . j d o  . 

The value u ~ - ~ , ~ - ~ . ~ - ~  is found by trilinear interpolation from the eight values on the cell in 
which the particle is situated. l 4  It should be mentioned here that improved estimates for a, b and c 
may be obtained simply using sun dt, f u n  dt and so” dt. However, explicit integration using 
several steps had negligible effect on our results given below. 

Including the horizontal diffusion terms explicitly, we now have 

FuY+ 1 / 2 .  j .  k = ul+ 1 / 2  - a ,  j -  b .  k - c  

flb At ul+ 1 / 2  - a  + 1 ,  j - h ,  k - c  - 2ul+ 1 / 2  - a ,  j -  b, k - c  + u:+ 1 / 2  - a  - 1 ,  j -  b. k - c  +- 
P Ax’ 

7 (32) 
flb At U ~ + 1 / 2 - a . j - b + I . k - c  - 2 u 2 + 1 / 2 - a , j - b , k - c  + U ~ - l / 2 - a . j - b - l . k - c  +- 

P AY’ 
with a corresponding expression for F V ~ , ~ +  1 i 2 . k .  

It remains to specify the initial and boundary conditions. We are concerned here with 
subcritical flow; the flow rate is specified at the inlet and the water surface elevation at the 
outlet. At t = 0 the water is stationary and the water level horizontal. The inlet flow rate is 
increased as a quarter-sinusoid and then maintained at a constant value to represent a steady 
current. More detailed boundary conditions for the problem to be considered here are given 
below. To set up the geometry, bed elevations and water surface elevations are input. The wet/dry 
boundaries are simply handled. If at a (horizontal) velocity mesh point the water depth is less 
than some small value, set to 0.001 m for these computations, all velocities (u,  v, w )  at that point 
are set to zero. If, with lowering water level, the depth at a mesh point becomes less than this 
small value, all velocities at that point are also set to zero. If, with rising water level, the depth 
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at a mesh point becomes greater than this small value, it is given a surface elevation with the 
same horizontal level as an adjacent wet cell and its velocities remain zero but are advanced at 
the following time step. Setting these velocities through interpolation from adjacent (wet) mesh 
points was also used but was found to make negligible difference and was regarded as an 
unnecessary complication. 

Varying the cut-off depth for wetldry boundaries was tested in the depth-averaged computa- 
tions by increasing it from 1 to 5 mm and this was found to have negligible effect. 

APPLICATION TO FLOW AROUND A CONICAL ISLAND 

This geometry was chosen so that computational results may be compared with those from an 
ongoing experimental investigation in a purpose-built 'wide' flume. In the particular case 
for comparison the water depth is 0.08 m, the mean velocity is 0.088 m s - l ,  the island side slope 
is 22" (to the horizontal) and its radius at the intersection with the water surface is 0.07 m. The 
flume is 1-52 m wide by 5.00 m long and is made of painted marine ply. Without the island 
present the water depth was virtually constant over the area of the flume (equal to the normal 
depth). It was not possible to measure the very small bed slope accurately. However, assuming 
Manning's number to be 0.01 for such a surface gives a bed slope of 0.00002246. This does of 
course assume a rough turbulent boundary layer which is not ensured for these laboratory 
conditions, but it does provide a reasonable basis for comparison. In order to determine the 
corresponding surface roughness height k, (for the 3D computations), we use the approximate 
relationship 

U = 5.75 log(_), 12.1 h 

u* 
(33) 

where ii is the mean velocity. For the conditions specified, k, = 0.000219 m. 
Initial tests were made to check that the water depth attained the normal depth after the 

transient start from still water conditions (for both 2D and 3D computations). This does not of 
course indicate the effectiveness of the schemes in simulating transient flows, particularly highly 
transient flows. An extreme example of the latter is the dam break problem which produces a 
moving shock and for which there is an analytical solution with the depth-averaged approxima- 
tion. The numerical method gives effectively exact predictions with subcritical flow behind the 
shock and nearly exact predictions with supercritical flow behind the shock. A detailed analysis 
will be given in a separate paper. We are thus satisfied that the computations accurately 
reproduce viscous effects and highly transient effects in well-established simple test cases (with 
subcritical flow for the latter). 

Y li position of / velocity measurement 

shoreline 

1.52m 

v 

5m 

Figure 2. Plan view of island showing co-ordinate system 

O x  
* * 
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Figure 3. Variation in velocities u and u with time at x = 1,617 m, y = 0.445 m from depth-averaged computation; cell 
size of 0.0152 m. 328 x 100 mesh 

Some preliminary 2D computations were made with the island in position to determine 
appropriate mesh sizes and time step. The numerical scheme is the same as Casulli’s apart 
from the use of Manning’s rather than Chezy’s formula. A computational domain was set 
up to correspond to the dimensions of the flume with x and y measured from the bottom 
left-hand corner in the downstream and cross-stream directions respectively as shown in Figure 
2. In these computations the flow remains symmetric for a long time before vortex shedding 
starts. In order to promote asymmetry, a cross-velocity u at the inlet is superimposed on the 
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Figure 4. As Figure 3 with a cell size of 0.0076 m, 656 x 200 mesh 
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longitudinal velocity u such that 

u = u, sin(2nt/T) for t < T/4 (= 5 s), 

u = (u/4)[1 - cos(2nt/T,)][1 - cos(2ny/L)] (34) 

where T, = T/4 and L is the width of the flume. In this way u = 0 at the sides of the flume, a 
necessary boundary condition. At the outlet boundary au/ax and av/dx are set to zero (the depth 
is of course fixed) and at the side walls u, and aq/ay are set to zero. While such simple 
outflow boundary conditions have been widely used, their limitations are obvious. Their effect 
on the results is assessed below. Computational domains have been set up using square cells of 
sizes 00304,0*0152 and 00076 m with meshes of 164 x 50,328 x 100 and 656 x 200 respectively. 
Time steps of 0.075, 0.05 and 0.025 s were tested with the coarsest mesh and almost identical 
results (velocity time histories at various positions) were produced for the two smaller values. 
Results with the 328 x 100 mesh were also almost identical with time steps of 0.025 and 0.05 s. 
Although the time stepping is only first-order-accurate, a value of 0.05 s appears small enough 
to give accurate results. On the other hand, the effect of decreasing cell size is more pronounced. 
Velocity time histories are shown in Figure 3 with a cell size of 00152 m and in Figure 4 with 
a cell size of 0.0076 m at a downstream position for which experimental data are available, 
namely 0857 m downstream of the island centre and 0.315 m across from the flume centreline 
(x = 1.617 m, y = 0-445 m). The behaviour is very close for the initial 40 s; differences then appear 
as vortex shedding becomes established. While the frequencies of velocity fluctuation for regular 
vortex shedding are almost identical in the two cases, the magnitudes of the fluctuations are 
noticeably greater for the smaller cell size. This leaves the matter of numerical convergence 
unresolved, but it appears that a cell size of 0.0152 m is adequate for the qualitative simulation 
of prominent vortex-shedding characteristics. 

The influence of the downstream boundary condition was tested using this cell size and a 
528 x 100 mesh (doubling the distance of the outlet boundary from the island centre). The 
corresponding velocity time history is shown in Figure 5. Since the depth is fixed at the outlet, 

for t < T,, 

ClUNNEL DEPTH - OW0 Y 
ONSET VELOClil - O W 4  U/S 

Figure 5. As Figure 3 with a cell size of 0.0152 m, 528 x 100 mesh 
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_ _ _ ~  
TIM' = 2000 se-I  

Figure 6 .  Velocity vector plot a t  the water surface from 3D computation with a cell size of 0,0152 m, 328 x 100 x 20 
mesh (arrow length is proportional to velocity magnitude) 

the water depth at the inlet is greater than in the previous tests and a different initial behaviour 
is thus expected, but the velocity characteristics are very similar once vortex shedding has started 
(and the depth is fluctuating about the normal depth). This indicates insensitivity of the resulting 
flow to the simple downstream boundary condition used. 

The 3D computations were made with the 0.015 m cell size with 20 vertical divisions (a 
328 x 100 x 20 mesh) and a time step of 0.05 s. The inlet and outlet boundary conditions are 
essentially the same as those described for the 2D computations. At the inlet the velocities u 
and v are prescribed uniformly over depth with magnitudes given in equation (34) and vertical 
velocity w = 0. At the outlet du/dx, a v / d x  and d o / a x  are now set to zero (across the depth) and 
at the side walls u, du/dy and dw/dy are set to zero (across the depth); dq/dy is also set to zero. 
A typical velocity vector plot (at the water surface) shows the oscillatory wake structure in Figure 
6. Figure 7 shows velocity time histories at bed, mid-depth and surface cells for the same position 
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Figure 7. Variation in velocities u and u with time at Y = 1.617 m, y = 0.445 m from 3D computation; cell size of 
0.0152 m, 328 x 100 x 20 mesh: (a) surface cell; (b) mid-depth cell; (c) bed cell 
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Figure 7. (Continued) 

as above. There is little difference between the surface and mid-depth cells, but the bed cell shows 
different frequency content as well as magnitudes. Figure 8 shows a comparison with experi- 
mental measurements of the u-velocity component obtained by laser Doppler anemometry (LDA) 
for a position about 5 mm below the water surface. There is close agreement in the dominant 
frequency between experiment and computation and in this case the velocity fluctuations are of 
similar magnitude, although experimental measurements over longer times are clearly desirable. 
Surface velocity vector plots have also been obtained experimentally by video analysis of small 
particles floating in a nearly submerged state (particle-tracking velocimetry ' '). An example is 
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Figure 8. Variation in surface u-velocity with time from computation and LDA experimental measurement at 
x = 1.617 m, y = 0.445 m, the smooth variation being for the former and the spiky variation for the latter 

shown in Figure 9(a) which may be compared with that obtained computationally at a 
corresponding phase in the wake oscillation cycle, shown in Figure 9(b), an enlarged portion of 
Figure 6. The flow patterns are qualitatively similar. 

Experimental measurements were also made at  the same downstream distance at 0-034m 
from the flume centreline (x = 1.617 m, y = 0.726 m). Velocities from the 3D computation are 
shown in Figure 10 and the u-velocity at the surface is compared with LDA measurements in 
Figure 1 1 .  The experimental measurements here show some marked differences from the 
computed velocities, the experimental values showing greater irregularity and a different mean 

I :  ~ . . 1) 1 . I I . 
. . I ,,.. % .  . .LJ, , . . 1 %  - ' , . . . . . . .  . . . . . . . . . . . . . . . .  . . . . . . .  . . . . . . . .  ......... ... -...*- . * * - * * * . -. 
I . - + * * + * +  
* + * * * - * - r +  

Figure 9. Velocity vector plot at the water surface at t = 200 s: (a) obtained in experiment using PTV; (b) obtained 
computationally, enlarged from Figure 6 for comparison 
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value. In making comparisons with experiment, however, it must be remembered that numerical 
convergence in relation to cell size has not been demonstrated and that a rather simple turbulence 
model has been used. The u-velocity has a dominant frequency of twice that for the v-velocity 
which corresponds to that at the greater distance from the flume centreline. In this position the 
computed velocities at bed, mid-depth and surface levels show greater differences. While the 
v-velocity has a dominant frequency at the second harmonic of the vortex-shedding frequency 
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Figure 10. Variation in velocities u and u with time at x = 1.617 m, y = 0.726 m from 3D computation: (a) surface cell; 
(b) mid-depth cell; (c) bed cell 
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Figure 10 (Continued) 

at the surface and mid-depth levels, it is at the fourth harmonic at the bed level. This has 
important implications for mixing processes. 

Finally, it is considered worthwhile to show velocity time histories for a position close to the 
shoreline of the island to demonstrate the stability of the method at small depths. Figure 12 
shows time histories at a distance of 0.0912 m across from the island centre (x = 0.76 m, 
y = 0.669 m; about 0.02 m from the wet/dry boundary on the lower shoulder). It can be seen 
that there is little variation in frequency content between bed, mid-depth and surface levels in 
this case. 

The computations were made initially on a vector processor, the Cray EL98, which has a 
peak processing performance of 133 Mflops (compared with 333 Mflops for a Cray YMP, both 
with one processor). The 2D run for 4000 time steps on the 328 x 100 mesh required 2 h, while 

Figure 1 I .  Variation in surface u-velocity with time from computation and LDA experimental measurement at 
Y = 1,617 m, y = 0.72 m, the spiky variation being for the latter and the smooth variation for the former (with circle 

symbols imposed for easy identification) 
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the 3D run on the 328 x 100 x 20 mesh required 103 h. The 2D code vectorized almost 
completely. The 3D code requires several direct solutions of a tridiagonal equation set per mesh 
point per time step (the number of equations being equal to the number of vertical mesh spacings). 
Such a direct solver with back substitution involves recursion and does not vectorize. However, 
the scheme is well suited to parallel computing and a parallelized version of the 3D code required 
only 5 h 40 min for the above run on the Kendall Square Research machine with 32 processors. 
The specialist programming methodology is described elsewhere.” 
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Figure 12. Variation in velocities u and u with time at x = 0.76 m, y = 0.669 m from 3D computation: (a) surface cell; 
(b) mid-depth cell; (c) bed cell 
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Figure 12. (Continued) 

CONCLUSIONS 

A semi-implicit Lagrangian form of the 3D shallow water equations has been developed to 
include the o-co-ordinate transformation in the vertical direction, allowing accurate resolution 
of bed and surface boundary conditions. A two-layer mixing length turbulence model for the 
vertical direction has been incorporated. The model is for rough turbulent flow and the bed is 
defined only by its roughness height. The situation of vortex shedding from a conical island with 
gently sloping sides in a current was computed and compared with some experimental velocity 
measurements. The 3D computations revealed some significant 3D effects and the gross flow 
features showed some agreement with experiment. However, while convergence of results has 
been demonstrated for decreasing time step, it has not for decreasing cell size. Differences between 
experiment and computation require further investigation for this challenging test problem, both 
in relation to numerical convergence and through the use of more sophisticated turbulence 
modelling. Use of adaptive mesh refinement would be desirable. Effective use is being made of 
parallel computing. 
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